AQUATUFF HIGH FOAM 25 LTR

Product group: 652 Product number: 736991

Unitor™ Aquatuff High Foam™ is a heavy duty alkaline cleaner with excellent foaming qualities specially formulated for cleaning cargo holds on bulk carriers.

Product information

Unitor™ Aquatuff High Foam™ creates a dense foam that prevents the cleaning solution from running off vertical surfaces and thereby enhances the cleaning efficiency. It is water based and is safe to the environment, containing only biodegradable ingredients.

It effectively removes most dry cargoes to "water white standard". Unitor™ Aquatuff High Foam™ is specially developed for cargo hold cleaning, but may also be used for other cleaning applications where Unitor™ Aquatuff™ normally is used but where high foam is beneficial.

Features
- Heavy Duty alkaline water based cleaner
- Specially formulated for the cleaning of cargo holds
- Does not contain nonyl phenol ethoxylates or other estrogenic compounds
- Biodegradable
- Free from hydrocarbon solvents
- Ideal for cleaning after coal, pet coke and other difficult cargoes
- Effective and economical in use
- Completely safe on epoxy coatings

Benefits
- Complies with all environmental regulations and the EU Detergent Regulation

Specification

<table>
<thead>
<tr>
<th>General</th>
<th>Physical properties</th>
</tr>
</thead>
<tbody>
<tr>
<td>Invent Hazard Material (IMO/EU) classification</td>
<td>C-49</td>
</tr>
<tr>
<td>Appearance</td>
<td>Orange</td>
</tr>
<tr>
<td>Density [g/ml]</td>
<td>1.1</td>
</tr>
<tr>
<td>Form</td>
<td>Liquid</td>
</tr>
<tr>
<td>pH</td>
<td>13</td>
</tr>
</tbody>
</table>

Technical data

| Not Compatible | The concentrated product may react with aluminium, zinc, tin and their alloys. |

Approvals

This composition meets the criteria for not being harmful to the marine environment according to MARPOL Annex V and may be discharged into the sea when used to clean cargo holds and external surfaces on ships.

Documents

Supplier's declaration of Conformity (SDoC)
Directions for use

Cargo Hold Cleaning

Unitor™ Aquatuff High Foam is specially developed to clean vertical surfaces. When applied with the proper spray foam equipment, the dense foam created prolongs the contact time between the cleaning solution and the surface to be cleaned. It effectively removes most dry cargoes, sludge, soot, carbon deposits, fish meal etc., and is used for cargo hold cleaning when going from black to white cargo.

Unitor™ Aquatuff High Foam should not be used on zinc coatings - on zinc coatings use Unitor™ Aquabreak PX (Product no. 651 575613 and 651 575605).

Dosing and application method

1. Apply Unitor™ Aquatuff High Foam mixed 10--25% (ratio 1:9 to 1:3) in water, using spray foam equipment.
2. Always apply the chemicals from bottom and upwards. Applying from top and down can result in lost cleaning effect or even staining.
3. Leave for 30--45 minutes. The surface remains wet.
4. Wash down with a high pressure unit or Unitor™ Cargo Hold Cleaning kit. For best results, direct the high pressure jet at the lowest parts of the hold first and work upwards.
5. Repeat the procedure if necessary.
6. Always perform final rinse with fresh water after wash down to avoid salt residues on the surface.

If Unitor™ Slip-Coat (Product no. 652 737015 and 652 737023) is applied to the cargo hold surfaces prior to loading, the concentration of Unitor™ Aquatuff High Foam in the cleaning solution may be reduced.

For more details refer to the Unitor™ Cargo hold cleaning quick guide

When mixing Unitor™ Aquatuff High Foam with seawater the following needs to be taken into account:

1. Seawater may reduce the foaming qualities of the detergent
2. Seawater may influence the pH of the cleaning solution with a reduced cleaning effect as result
3. Seawater represents a corrosion risk to the surfaces and the equipment used

When mixing Unitor™ Aquatuff High Foam with seawater it is recommend to have a concentration of at least 20 - 25% (ratio 2:9 to 1-3).

Related products

Is frequently bought together with

571752 NATURAL HANDCLEANER 4X5 LTR

This page is printed from: